Management of Cancer in the Carotid

Grand Rounds
April, 2003
Case Presentation (GBMC 3482822)

- **CC:** 51yo man with painful neck mass and dysphagia
- **HPI:**
 - heavy alcohol and tobacco use
 - R anterior FOM excis Bx 8/2000
 - *in situ SCCa @ outside lab; invasive SCCa @ GBMC*
 - *Lost to follow-up*
 - *Represented October 2001 to outside hospital with dysphagia and large L neck mass*
 - DL/Bx and I&D of neck (presumed branchial cyst)
 - SCCa pyriform sinus & left neck T2N3aM0
 - 70 Gy external beam XRT
 - No Chemotherapy
 - *Returned to GBMC 3/2002 with draining, painful, foul-smelling 10 cm left neck mass*
 - Unable to swallow, PEG, losing wt loss 158 -> 125 lb
• **PMH**
 – No cardiac, pulmonary, neuro, vascular, other PMHx
• **Meds**
 – significant narcotic requirement
• **SocHx**
 – Bus driver
 – 1-2 ppd. 1.5 cases beer/wk.
 – Lives with Mother who accompanies to visits
 – Married. One adult son.
• **FamHx, ROS**
 – Noncontributory
Physical Exam

• **Head & Neck:**
 – Nphx, Ophx, FOL normal except for mucositis and edema
 – B TVF normal mobility
 – 10 cm L neck mass, firm and fixed, with draining tracts
 – radiation skin changes

• **Neuro/Psych:**
 – No neurologic deficits noted on initial exam
 – Depressed affect

• **Cardiopulmonary:**
 – normal exam, no PVD, good exercise tolerance

• **GI/GU/Nutritional:**
 – Weight 125 lb (down >30 lb)
• **Labs**
 – CBC/CMP/LFT HCT 29.7, Cr 0.5
 – metastatic workup (CXR, Chest CT, LFTs) negative

• **CT Scan**
 – [Dr. Wang to review]
• **MRI/MRA** [Dr. Wang to Review]
 – Tumor abutting/partly encasing carotid
 – Normal MRA

• **Angiogram with Left Balloon Test Occlusion**
 – no intima invasion/occlusion
 – no dominance
 – good collateral flow via normal circle of Willis
 – no clinical neurologic deficits after 25 min BTO
• 99mTechnetium HMPOA SPECT perfusion scan
 – 25 mCi HMPOA injected IV 25 min into BTO
 – Symmetric, normal cortical tracer perfusion
• **Therapeutic options considered**
 – *Do nothing / Hospice*
 – *Chemotherapy*
 – *Additional XRT (e.g., IMRT)*
 – *Radical resection*
 • *Carotid resection vs adventitial peel*
 • *Carotid ligation vs revascularization*
 • +/- *brachytherapy*
• **Procedure**

 – Dr. Pinhiero; 5/3/2002
 – Neurovascular Surgeon and Radiation Oncologist on standby

 – Tracheostomy
 – Direct laryngoscopy with Left pyriform sinus, BOT & tonsil biopsies (negative)
 – Extended radical L neck dissection with resection of CN 10,11,12 and 9x10 cm skin
 – Carotid adventitial peel
 – Pectoralis major myocutaneous flap
 – No brachytherapy catheters placed
• **Pathology**
• **Main specimen**
 • 5.5 x 4.5 x 2.5 cm Keratinizing SCCa
 • marked histiocytic response
 • in the sternocleidomastoid muscle, to dermis
 • spanning levels II, III, and IV
 – margins along carotid wall
 • + at level 4, < 1mm at levels 2,3
 – Internal jugular superior margin
 • “Rare degenerated foci of squamous cell carcinoma with associated histiocytes and calcifications”
 – All other margins negative
Postoperative Course

• **Uneventful initial post-operative course**
 – No evidence of stroke
 – depressed affect
 – CN 10,11,12 defects
 – discharge home NPO with PEG/Trach POD5
 – decannulated POD 12
 – swallow study POD 30

• **readmitted POD 30 for poor enteral intake**
 – SLP, nutritional, psychiatric, social evaluation
The Dilemma of Carotid Involvement in Head & Neck Cancer

- Complete tumor removal provides the best chance of cure for advanced SCCa in neck
 - 67% with + margins recur locally despite post-op XRT
 [Zieske/Johnson/Myers Arch OHNS '86]

But...

- Risk of iatrogenic stroke and death are high with common/internal carotid resection
 - 26% CVA, 12% periop death in unselected patients
 [Donald '97]

- Carotid involvement portends poor prognosis regardless of local control
Is Carotid Resection for SCCa Worthwhile?

- **Is it futile?**
 - Is surgery contraindicated by the rate of metastasis?

- **Is it oncologically effective?**
 - Does it improve locoregional control? Palliation?

- **Is it safe?**
 - Is the perioperative M&M rate acceptable compared to alternative therapies for carotid involvement?
 - Is M&M rate different from that for “resectable” N3/ECS?

- **Are there better options?**
 - Adventitial Peel, Brachytherapy, ChemoXRT, Hospice

- **Is your patient a candidate?**
 - How can you select patients to minimize risk?
• **Snyderman & D’Amico ‘92** [UPitt., Am J. Otolar. ‘92]
 – Pooled case-control analyses published 1987-92
 – N=158 carotid resections, 22 papers
 – 180 controls (N3 with ECS but not to carotid)
 – 65% revascularized
 • 82% vein graft
 • 7% allograft
 • 11% EC -> IC
 – 35% no revascularization (or thrombosis)
 – pre-op workup not specified
 • era of transition from BTO to XCT to SPECT CBF
Is Carotid Resection for SCCa Worthwhile?

• Is it futile?
 – Is surgery contraindicated by the rate of metastasis?

• Is it oncologically effective?
 – Does it improve locoregional control? Palliation?

• Is it safe?
 – Is the perioperative M&M rate acceptable compared to alternative therapies for carotid involvement?
 – Is M&M rate different from that for “resectable” N3/ECS?

• Are there better options?
 – Adventitial Peel, Brachytherapy, ChemoXRT, Hospice

• Is your patient a candidate?
 – How can you select patients to minimize risk?
Is Carotid Artery Resection Futile?

Disease-free survival

Kennedy et al 1977

Followup (months)

% Surviving

N3+ECS N=180

CA Resection N=144/158

p = 0.51

No significant difference in survival between CA resection and “Resectable” N3/ECS

[Snyderman & D'Amico, UPitt., Am J. Otolar. ‘92]
Is Carotid Artery Resection Futile?

- [Snyderman & D’Amico, UPitt., Am J. Otolar. ’92]

Followup (months)

% Surviving CA resection

1980-1992

1939-1979

p = 0.67

No significant difference
Is Carotid Resection for SCCa Worthwhile?

- Is it futile?
 - Is surgery contraindicated by the rate of metastasis?
 - Is outcome different from that for “resectable” N3/ECS?

- Is it oncologically effective?
 - Does it improve locoregional control? Palliation?

- Is it safe?
 - Is the perioperative M&M rate acceptable compared to alternative therapies for carotid involvement?

- Are there better options?
 - Adventitial Peel, Brachytherapy, ChemoXRT, Hospice

- Is your patient a candidate?
 - How can you select patients to minimize risk?
Is Carotid Resection Effective?

- **Locoregional control**
 - Carotid resection bestows prognosis equivalent N3/ECS

- **Distant Metastases**
 - Majority (77%) did not develop distant mets
 - 2/3 recurrences were at the primary or in the neck

- **Palliation**
 - reduced pain
 - reduced blow-out risk
 - cosmesis
Is Carotid Resection for SCCa Worthwhile?

• Is it futile?
 – Is surgery contraindicated by the rate of metastasis?
 – Is outcome different from that for “resectable” N3/ECS?

• Is it oncologically effective?
 – Does it improve locoregional control? Palliation?

• Is it safe?
 – Is the perioperative M&M rate acceptable compared to alternative therapies for carotid involvement?

• Are there better options?
 – Adventitial Peel, Brachytherapy, ChemoXRT, Hospice

• Is your patient a candidate?
 – How can you select patients to minimize risk?
Is Carotid Resection/Revasc Safe?

Periop M&M: Carotid endarterectomy for vascular disease

<table>
<thead>
<tr>
<th>Study</th>
<th>Pub Date</th>
<th>N</th>
<th>Stroke %</th>
<th>Death %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sundt Jr</td>
<td>1987</td>
<td>1935</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Mackey et al</td>
<td>1990</td>
<td>598</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>Archie Jr</td>
<td>1991</td>
<td>665</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Geary et al</td>
<td>1993</td>
<td>1572</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Peer et al</td>
<td>1994</td>
<td>920</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Rockman et al</td>
<td>1996</td>
<td>3975</td>
<td>2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Paty et al</td>
<td>1996</td>
<td>1267</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Plestis et al</td>
<td>1996</td>
<td>1006</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Lepojarvi et al</td>
<td>1996</td>
<td>654</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Little & Meyer</td>
<td>1997</td>
<td>3665</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1990-1997</td>
<td>16257</td>
<td></td>
<td>1.5%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

[Katsuno et al, Shinsu U, Japan, OHNS 2001]
Is Carotid Resection/Revasc Safe?

Periop M&M: Carotid reconstruction after resection for cancer

<table>
<thead>
<tr>
<th>pub date</th>
<th>N</th>
<th>Stroke</th>
<th>%</th>
<th>Death</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biller et al</td>
<td>1988</td>
<td>28</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>McCready et al</td>
<td>1989</td>
<td>13</td>
<td>2</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>East et al</td>
<td>1989</td>
<td>6</td>
<td>1</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Reilly et al</td>
<td>1992</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meleca & Marks</td>
<td>1994</td>
<td>8</td>
<td>1</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Okamoto et al</td>
<td>1996</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Wright et al</td>
<td>1996</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Numata et al</td>
<td>1997</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sessa et al</td>
<td>1998</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Soulier et al</td>
<td>1998</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Katsuno et al</td>
<td>2001</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1988-2001</td>
<td>150</td>
<td>7</td>
<td>4.7%</td>
<td>10</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

[Katsuno et al, Shinsu U, Japan, OHNS 2001]
Is Carotid Artery Resection Getting Safer?

All cases 1980-1992

- N=158, **35% without revascularization**
- Major stroke 17%
 - In only 3% of pts who were ligated after normal BTO/CBF
- Periop Death ? (20% in first year)
- 2 year disease-free survival 22%
 - Revascularization did not change outcome

Revascularized cases 1987-1998

- N=148, all revascularized
- Major nonfatal stroke 4.7%
- Periop Death 6.8%
- Major Complications 10%

[Snyderman & D'Amico, Am J. Otolar. '92]
[Katsuno et al, OHNS 2001]
Is Carotid Artery Resection Getting Safer?

• **Better outcomes, but why?**
 – *Publication/selection bias?*
 – *Revascularization* [Meleca & Marks 1994]
 • 58% of 12 pts ligated without revasc stroked
 • 13% of 8 pts revascularized stroked
 – *Better perioperative management*
 • aspiration risk
 • hypotension/anemia risk
 • vascularized flap coverage of carotid
 • Better patient selection

Can CA Resection Be Made Safer?

No Periop M&M
90%

Death
6.8%

Nonfatal Stroke
3.4%

Stroke
1.4%

Infection/Blow
1.4%

Cardiac
2.0%

Hepatic
0.7%

Aspiration
0.7%

Unknown
0.7%

Aspiration prevention
Avoid CA resection with pharyngotomony
Cardiac evaluation/prophylaxis
Patient selection based on cerebral blood flow

[Katsuno et al, OHNS 2001]
Is Carotid Resection for SCCa Worthwhile?

• Is it futile?
 – Is surgery contraindicated by the rate of metastasis?
 – Is outcome different from that for “resectable” N3/ECS?

• Is it oncologically effective?
 – Does it improve locoregional control? Palliation?

• Is it safe?
 – Is the perioperative M&M rate acceptable compared to alternative therapies for carotid involvement?

• Are there better options?
 – Adventitial Peel, Brachytherapy, ChemoXRT, Hospice

• Is your patient a candidate?
 – How can you select patients to minimize risk?
Are There Better Treatment Options?

- **Non-operative**
 - Chemo/XRT
 - Chemo or XRT alone
 - Supportive care / Hospice
- **Operative**
 - Carotid resection
 - with revascularization
 - without revascularization
 - Adventitial peel
 - Brachytherapy
 - Many patients have already had external XRT
<table>
<thead>
<tr>
<th>Study</th>
<th>Primary sites O/Hy/L/C (%)</th>
<th>Resectable (%)</th>
<th>No. patients (analyzable)</th>
<th>Concurrent chemotherapy</th>
<th>Fractionation</th>
<th>Differences in RT between arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wendt et al. [6]</td>
<td>42/36°/22</td>
<td>0</td>
<td>140</td>
<td>No</td>
<td>H split 70.2 Gy 1.8 Gy bid</td>
<td>Same</td>
</tr>
<tr>
<td>Brizel et al. [7]</td>
<td>45/20/16/5</td>
<td>47</td>
<td>130</td>
<td>CDDP/5-FU/LV</td>
<td>H 1.25 Gy bid</td>
<td>75 Gy</td>
</tr>
<tr>
<td>Calais et al. [8]</td>
<td>100/0/0/0</td>
<td>NR</td>
<td>113</td>
<td>No</td>
<td>Conventional</td>
<td>70 Gy with break same</td>
</tr>
<tr>
<td>Adelstein et al. [9]</td>
<td>45/16/36/4</td>
<td>100</td>
<td>109</td>
<td>carbo/5-FU</td>
<td>Conventional</td>
<td>same</td>
</tr>
<tr>
<td>Jeremic et al. [10]</td>
<td>44/19/20/25</td>
<td>NR</td>
<td>65</td>
<td>No</td>
<td>H 77 Gy 1.1 Gy bid</td>
<td>same</td>
</tr>
<tr>
<td>Adelstein et al. [11]</td>
<td>59/18/9/13</td>
<td>0</td>
<td>95</td>
<td>A) No</td>
<td>Conventional</td>
<td>70 Gy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td>B) CDDP</td>
<td></td>
<td>70 Gy with split 60–70 Gy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td>C) CDDP/5-FU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dobrowsky and Naude [12]</td>
<td>41/17/12/30</td>
<td>0</td>
<td>81</td>
<td>No</td>
<td>Conventional</td>
<td>70 Gy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>No</td>
<td>V-CHART</td>
<td>55.3 Gy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>Mitomycin</td>
<td>V-CHART</td>
<td>55.3 Gy</td>
</tr>
<tr>
<td>Staar et al. [13]</td>
<td>74/26/0/0</td>
<td>0</td>
<td>127</td>
<td>No</td>
<td>AH 69.9 Gy</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>113</td>
<td>Carbo/5-FU</td>
<td>AH 69.9 Gy</td>
<td></td>
</tr>
<tr>
<td>Budach et al. [14]</td>
<td>60/32/0/7</td>
<td>NR</td>
<td>384</td>
<td>No</td>
<td>AH</td>
<td>77.6 Gy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>169</td>
<td>Mitomycin/5-FU</td>
<td></td>
<td>70.6 Gy</td>
</tr>
<tr>
<td>Forastiere et al. [15]</td>
<td>0/0/100/0</td>
<td>100</td>
<td>171</td>
<td>A) No</td>
<td>Conventional</td>
<td>same</td>
</tr>
<tr>
<td>Study</td>
<td>Resectable (%)</td>
<td>Locoregional control (%)</td>
<td>Distant failure (%)</td>
<td>3-year PFS (%)</td>
<td>3-year OS (%)</td>
<td>Grade III/IV mucositis (%)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Wendt et al. [6]</td>
<td>0</td>
<td>17</td>
<td>NR</td>
<td>NR</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Brizel et al. [7]</td>
<td>47</td>
<td>35 (P<0.004)</td>
<td>9</td>
<td>49 (P<0.0003)</td>
<td>38 (P<0.001)</td>
<td>75</td>
</tr>
<tr>
<td>Calais et al. [8]</td>
<td>NR</td>
<td>42</td>
<td>11</td>
<td>20</td>
<td>31</td>
<td>39</td>
</tr>
<tr>
<td>Adelstein et al. [9]</td>
<td>100</td>
<td>66 (P=0.03)</td>
<td>11</td>
<td>42 (P=0.04)</td>
<td>51 (P=0.02)</td>
<td>71 (P=0.005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 (P<0.001) 5-year</td>
<td>16</td>
<td>62 (P=0.04) 5-year</td>
<td>50 (P=0.55)</td>
<td>84 (P=0.001)</td>
</tr>
<tr>
<td>Jeremic et al. [10]</td>
<td>NR</td>
<td>36</td>
<td>43</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 (P=0.041) 5-year</td>
<td>14 (P=0.0013)</td>
<td>46 (P=0.0068)</td>
<td>46 (P=0.0075)</td>
<td>49 (P=0.48)</td>
</tr>
<tr>
<td>Adelstein et al. [11]</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Dobrowsky and Naude [12]</td>
<td>0</td>
<td>31</td>
<td>12</td>
<td>NR</td>
<td>24</td>
<td>90 with the V-CHART arms</td>
</tr>
<tr>
<td>Staar et al. [13••]</td>
<td>0</td>
<td>45</td>
<td>NR</td>
<td>NR</td>
<td>39</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51 (P=0.14) 2-year</td>
<td>NR</td>
<td>48 (P=0.09)**</td>
<td>68 (P=0.01)</td>
<td>2-year</td>
</tr>
<tr>
<td>Budach et al. [14••]</td>
<td>NR</td>
<td>46</td>
<td>31</td>
<td>NR</td>
<td>39</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 (P=0.03) 2-year</td>
<td>35</td>
<td>49 (P=0.05)</td>
<td>2-year</td>
<td></td>
</tr>
<tr>
<td>Forastiere et al. [15••]</td>
<td>100</td>
<td>58†</td>
<td>7 (P=0.044 vs. C)</td>
<td>NR</td>
<td>76</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68 (P=0.07 vs. A)</td>
<td>8</td>
<td>76</td>
<td>76</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53 2-year</td>
<td>15 2-year</td>
<td>77 2-year</td>
<td>77</td>
<td>36</td>
</tr>
</tbody>
</table>
Is Adventitial Peel Adequate?

• **Huvos et al** [Am J Surg 1973]
 – $N = 64$ resected carotid specimens
 – 70% of patients were post-XRT
 – 58% showed microinvasion of carotid wall
 • correlation between XRT and margins not specified
 – All post-XRT carotids had marked atherosclerosis

• **Conclusions**
 – Adventitial peel usually fails to give a clear margin
 – May increase risk for subsequent blowout
Is Carotid Resection for SCCa Worthwhile?

- **Is it futile?**
 - Is surgery contraindicated by the rate of metastasis?
 - Is outcome different from that for “resectable” N3/ECS?

- **Is it oncologically effective?**
 - Does it improve locoregional control? Palliation?

- **Is it safe?**
 - Is the perioperative M&M rate acceptable compared to alternative therapies for carotid involvement?

- **Are there better options?**
 - Adventitial Peel, Brachytherapy, ChemoXRT, Hospice

- **Is your patient a candidate?**
 - How can you select patients to minimize risk?
Patient selection for planned CA resection

- Unselected Acute Unilateral Carotid Ligation
 - 26% Death
 - 12% Major Stroke

[Nemzek W, in Donald P Surgery of the Skull Base 2001]
Patient selection for planned CA resection

• **Tests of Carotid Ligation Tolerance**
 – Manual Carotid Occlusion [Matas 1911]
 • compress ipsi carotids by hand in office, neuro exam
 • **Advantages**
 – in office test, free
 • **Disadvantages**
 – imprecise due to vasovagal effects
 – difficult to compress carotid amid tumor
 – embolic risk
 – high likelihood of in-office stroke/death
Patient selection for planned CA resection

• Tests of Carotid Ligation Tolerance
 – Doppler Matas
 – Angiography
 • MRA
 • CT angio
 • Intraarterial contrast 4-vessel arteriography
 – Balloon Test Occlusion (BTO)
 • Arteriography
 • Clinical Exam
 • EEG
 • Stump Pressure
Patient selection for planned CA resection

• Tests of Carotid Ligation Tolerance
 – BTO with Cerebral Perfusion Scan
 • Technetium HMPOA SPECT scan during BTO
 – Hexamethylpropyleneamine oxime
 – lipophilic tracer
 – distributes per CBF
 • Xenon CT
 – inhaled Xenon gas diffuses like N20
 – risk of general anesthesia during test
Patient selection for planned CA resection

- **Unselected Acute Unilateral Carotid Ligation**
 - 26% Death
 - 12% Major Stroke

MRA then 4 vessel angio

BTO with clinical exam

BTO with HMPOA SPECT

3-20% Stroke with CA ligation

- **Stroke rate 1.3-2.6%**
 - 5-10% fail exam
 - Complications (0-8%)
 - 1.6% stroke/TIA after test
 - 0.4% permanent
 - 1.2% dissection
 - 0.2% pseudoaneurysm
 - 0.2% embolism

[Nemzek W, in Donald P Surgery of the Skull Base 2001](#)
Preop Evaluation Algorithm

• **Standard preoperative evaluation**
 – surgical
 – medical
 – metastatic w/u
 – neurologic
 – psychosocial
 – **STOP if**
 • metastatic to distant sites
 • frail cardiopulmonary or neurovascular status
 – risk of hypotension, aspiration, stroke
 • preexisting contralateral carotid deficits
Preop Evaluation Algorithm

• MRI/MRA/MRV
 – detail soft tissue around carotid, preop planning
 – CT angio/venogram if pacemaker or other implant
 – STOP if
 • unresectable for other reasons
 • carotid not involved
 • ipsilateral carotid dependence, bad Circle of Willis
Preop Evaluation Algorithm

• 4-vessel Angiogram with Balloon Test Occlusion
 – Clinical assessment
 • STOP if fails clinical exam <20 minutes BTO
 – HMPOA SPECT perfusion scan during BTO
 • Xenon CT alternative
Preop Evaluation Algorithm

• Perioperative Management
 – intraoperative EEG
 • somatosensory, ABR, EMGs
 – keep volume repleted, avoid hypotension
 • may be at odds with free flap
 – Revascularize
 • team approach with vascular/neurosurgeon
 – Wound reconstruction
 • Vascularized flap coverage (PMMF) if carotid spared
 • Meticulous closure to avoid pharyngeal leak
 – Aspiration Precautions
 • trach, PEG, NPO
End Notes

• Need a prospective RCT
 – Publication bias
 – Selection bias
 – Low numbers in most series

• Stroke and Disease-free survival are not the only relevant measures
 – Palliation of pain/wound
 – Mode of death, avoidance of blowout
 – Non-stroke dysfunction (CN9,10,11,12,symp)

• Doesn’t apply to non-SCCa tumors
 – Paragangliomas
Hy and L combined.
Updated 5-year OS 28% versus 42% ($P = 0.05$).
In oropharyngeal cancer patients, OS was improved with chemoradiotherapy.
Induction CDDP/5-FU.
Laryngectomy-free survival.
AH, accelerated hyperfractionated; carbo, carboplatin; CDDP, cisplatin; 5-FU, 5-fluorouracil; overall survival; PFS, progression-free survival; RT, radiotherapy; V-CHART, Vienna (variant) C.