Laryngeal Imaging

Physical Examination of the Larynx

Barbara P. Messing, M.A., CCC-SLP, BRS-S
Melissa Walker, M.S., CCC-SLP
The Value of Laryngeal Stroboscopy

Provides information regarding

- Ability of system to achieve an efficient prephonatory/nearly closed configuration
- Pliability of the cover
- Stroboscopy refers to the observation of vocal fold vibratory characteristics and not the observation of vocal fold abduction and adduction

Courey, 2006
Laryngeal Stroboscopy: Training for Professionals

“Although specific experiences may differ among professionals, the interpretation and clinical use of laryngeal stroboscopy information in the assessment and treatment of phonatory function disorders is highly specialized and requires substantial training and knowledge beyond that believed to be available in most graduate speech-language pathology or laryngology residency programs.”

Ideally, both a rigid and flexible video stroboscopy should be performed.

- Rigid endoscopy – looking for vocal fold edge/ pliability/ wave, glottic closure, open/ close phase
- Flexible endoscopy --- looking for vocal fold parameters and supraglottic behavior during actual speaking and singing
- Sustained /i/ at varied pitch and loudness – essential to correct diagnosis
Digital vs. Fiberoptic Flexible Nasoendoscopy
Rigid Endoscope

- Best image clarity
- 70° or 90° angle lens
- Hyperactive gag response may prevent use
- Often tension artifact
- Normal speech tasks not possible
Performing Endoscopy

- Topical anesthetic and decongestant
- Either patient or examiner holds tongue w/ gauze
- Scope inserted to the base of tongue and angled downward
- “Thinker” pose
- Sustained /i/ at varied pitch and loudness

Light Source - Halogen

- Halogen
 - Steady
 - Continuous light
 - Allows clear visualization of anatomical structures

- Limitations
 - Vibratory behavior of the vocal folds cannot be seen
Stroboscopy

- Founded on Talbot’s Law (video)
- A contact microphone reads fundamental frequency (pitch)
- Uses a flashing xenon light to sample many single points along multiple waveforms in accordance with pitch produced by patient
- Allows a locked or traveling image of the folds
Halogen vs. Xenon Light
Stroboscopy

- In traveling mode, light flashes at different points in the vibratory cycle – slow motion effect
- In locked mode, light flashes at same point in each cycle – image appears still
Locked/ Traveling Modes
Scope Selection

- **Rigid Examination**
 - Ideal if close view of pathology is needed
 - Excellent for evaluating vibratory patterns
 - May elicit abnormal muscular movement secondary to unnatural positioning

- **Flexible Examination**
 - Offers a more natural production
 - Allows observation of voice production during connected speech
 - Subject to intermittent changes in view as patient alters position of the velum, base of tongue, or swallows
Stroboscopy - Disadvantages

- Representation of vibration – not actual cycle
- Two-dimensional
 - Superior surface view - only
 - Unable to evaluate lower lip region when upper lip region is closing or closed
- If patient is too dysphonic, pitch recording, and therefore strobe, not possible
Normal Vibratory Characteristics

- A universal rating system and/or scale does not exist
- Evaluation is subjective and dependent on the skill of the examiner
- **Videostroboscopic Examination of the Larynx**, M. Hirano and D. Bless, 1993, Singular Publishing

- Phase closure
- Amplitude
- Mucosal wave
- Symmetry
- Periodicity
- Vertical plane
SAV and SERF
Visual Perceptual Judgements

- Not vibratory characteristics, but simple observation of
 - Overall structural appearance of the larynx, including remarks on color, mucous
 - Symmetry and movement of arytenoids
 - Vocal fold edge (smooth, rough, edema, lesion, etc.)
 - Glottic closure pattern
 - Supraglottic hyperfunction
Glottic Closure Pattern

- Complete
- Incomplete
- Bowed
- Hourglass
- Anterior gap
- Posterior gap
- Spindle gap
Supraglottic Hyperfunction (Muscle Tension Dysphonia)
Amplitude

- The extent of vertical-lateral excursion, the extent of lateral displacement from midline
- R/L judged separately
- Normal, mild-mod-severely reduced, absent
- Presence of lesion, edema, stiffness, hyperfunction will affect amplitude
- The product of subglottic pressure
Amplitude
Mucosal Wave

- The longitudinal flexibility of the fold, seen as a traveling wave on vibration
- Absence of mucosal wave described as a “non-vibrating portion” or “adynamic segment”
- May appear increased in cases of paresis/paralysis secondary to flaccidity
- R/L judged separately
- Normal, mild-mod-severely reduced, absent
Mucosal Wave
Symmetry

- Based on the degree to which the two folds appear as mirror images of one another
- Consider timing of opening, closing, approach to midline, excursion, etc.
- Symmetrical, sometimes, mostly, always irregular
Symmetry
Periodicity

- The regularity of successive apparent cycles of vibration
- Periodic vibration is uniform in time and amplitude, aperiodic is not
- Periodicity reflected by a static image in the “locked” mode
- Some application in diagnosis of SD
Periodicity
Phase Closure

- Describes the ratio of open to closed phase
- Open phase may be increased in cases of presbylarynx, glottal lesion, paralysis
- Closed phase may be increased in cases of hyperfunction
- Open phase or closed phase predominates, mostly/ somewhat open or closed
Phase Closure
Vertical Plane/Phase Difference

- Vocal folds should meet in the same horizontal plane
- A vertical discrepancy affects upper lip/lower lip adduction, impacting other vibratory characteristics
- Vertical plane may be affected by paralysis, CA joint injury
- Equal, right/ left lower
Vertical Phase Difference