Case Presentation – Unknown Primary Squamous Cell Carcinoma of Head and Neck

The Greater Baltimore Medical Center
Metastatic Cancer to the Neck From Unknown 1º Site

- WHO definition: histologic diagnosis of metastases without diagnosis of 1º tumor
- 2-9% of all head and neck cancers
- Estimates suggest 50% of metastatic cancer to the neck from an unknown primary site to be SCC

June 4, 2012
Background

- Workup should clearly involve a search for the primary site
- 1° tumor is prognostic indicator
Background

• Consider the possibility:
 – Neck mass is “primary” site of cancer
 – Spontaneous regression of true primary w/ residual metastases
 – Primary tumor is present, but quiescent
Background

- Importance of PE performed by Head and Neck Surgeon
- FNA of neck mass
- PET-CT (in patients w/ negative CT and endoscopic findings, PET Revealed primary in 29-39%7,8

June 4, 2012
Treatment Options:

- Depends on whether source is found during workup:
 1) If primary site identified, then treatment is directed at primary tumor origin
 2) Alternatively, true unknown primary: comprehensive ND, post-op radiation to involved neck and possible mucosal sites
Case Presentation #1: DP

- 42 yo male
- Hx right neck mass reportedly since 12/11
- PMH: HTN, peptic ulcer dz
- PSH: none
- FH: noncontributory
- SH: tobacco use since age 15, with 12 pack years. Drinks socially
- Meds/Allergies: None
Case Presentation #1: DP

- PE: Normal oral cavity and oropharynx with soft base of tongue
- FNA of neck mass showed SCC
- Prior to scan, patient was unknown primary SCC of head and neck
PET-CT: DP

- 2.9 cm right level II LNw/ intense uptake and SUV max of 12.9
- Second 8mm node asjacent
- Subtle asymmetric uptake in R posterior BOT (normal variation)
- No mass on CT/enhanced CT
• OHNS read of PET-CT was potential uptake in right tonsil

• Staging:
 - 1° Tumor: T1 2 cm or less
 - LN: N2b multiple ipsilateral LN, none more than 6 cm
 - Metastases: M0 none
Surgical Treatment: DP

• DL w/ bx, PEG, Extraction of 4 wisdom teeth, TORS radical tonsillectomy, R SND 1-4, L SND 1, L SMGT

• Path: Histologically labeled moderately differentiated invasive squamous cell carcinoma
Future Treatment: DP

• Awaiting radiation therapy (5 weeks after surgery)
Case Presentation #2: JL

- 54 yo female
- L neck mass during TMJ eval 3/2012
- PMH: Graves dz, migraines, TMJ, GERD
- FH: a fib, stroke, emphysema, bipolar, DM, skin cancer
- SH: 4 yr use of 1 ppd 30 yrs prior
- Meds/Allergies: nexium, pain med, synthroid
Case Presentation #2: JL

- PE: Normal oral cavity and oropharynx with soft base of tongue
- L Neck Level II nodes deep to SCM
- CT showed left sided lymphadenopathy, no other possible sites of 1°
• Level II LN enlargement
• Mildly asymmetric left BOT with increased uptake of FDG
• Potential source for SCC – L BOT
• Patient currently a TxN2bMx
Surgical Treatment: JL

• **If 1º Source Unknown**: Bilateral tonsillectomy, possible lingual tonsillectomy, SND, PEG, Gland transfer

• **If 1º Source Known**: 1º chemoradiation
References

Radiation Oncology issues in Patients with Metastatic Cervical Carcinoma of Unknown Primary (MCCUP)
NCCN Guidelines™ Version 2.2011
Occult Primary

PATHOLOGIC FINDINGS

WORKUP

DEFINITIVE TREATMENT

Primary found

- Treat as appropriate (See Guidelines Index)

Node level I, II, III, upper V

- Examination under anesthesia (EUA)
- Palpation and inspection
- Biopsy of areas of clinical concern and tonsillectomy
- Direct laryngoscopy and nasopharynx survey

Node level IV, lower V

- EUA including direct laryngoscopy, esophagoscopy
- Chest/abdominal/pelvic CT (or PET-CT if not previously performed)

Adenocarcinoma of neck node, thyroglobulin negative, calcitonin negative

- Levels I-III
 - Neck dissection + parotidectomy, if indicated
 - RT f to neck ± parotid bed

- Levels IV, V
 - Evaluate for infraclavicular primary
 - Neck dissection, if indicated

Poorly differentiated or nonkeratinizing squamous cell or NOS or anaplastic (not thyroid) of neck node or Squamous cell carcinoma of neck node

See Definitive Treatment (OCC-3)
What are the Advantages to Surgery?

• Accurate Staging (up 34-57% of patients are upstaged)
• Decision for post-treatment therapy is based on actual, rather than presumed, pathologic findings
• N1 patients with good pathologic features may be observed....
What are the Advantages to Primary XRT or CRT

- No surgery
- Possibility for only one definitive therapy to be administered with hopefully less side effects
How Does Treatment Modality Affect Outcome??

- Meta-analysis
- Only studies with 5-yr survival outcomes included
- 18 studies with 1,726 patients
- 6 studies reported Extracapsular Extension

Balaker AE et al., Laryngoscope. 2012, April 26
How Does Treatment Modality Affect Outcome??

• Five Year Survivals:
 – N1: 61%
 – N2a: 63%
 – N2b: 43%
 – N2c: 38%
 – N3: 26%

• Outcomes based on EC:
 – 57% (with) versus 82% (without), p = 0.01 (Only 6/18 studies)

• Outcomes based on Treatment:
 – Surgery followed by XRT or CRT 52% vs Definitive CRT 47% (p = NS)
Surgery for N1 Disease

- 117 Patients at Mayo Clinic with CUP between 1965 and 1987
- Of these, 24 patients underwent curative resection of all gross disease with no adjuvant therapy
 - 14 were N1
 - 6 were N2a
 - 3 were N2b
 - 1 was N3
- 8 patients had ECE
- 6/24 patients (25%) developed a recurrence
 - 5/6 had ECE
 - 4/6 had N2a disease or higher
 - Both of the patients that were N1 and recurred had ECE
- Conclusion
 - Patients who are N1 that have no ECE may undergo dissection alone without adjuvant radiation
 - All other groups should receive adjuvant radiation due to high risk of local recurrence

Surgery for N1 Disease

Table 2. Recurrence pattern and salvage based on initial therapy for N1–N2a patients.

<table>
<thead>
<tr>
<th>Recurrence site</th>
<th>EXC ($n = 11^*$)</th>
<th>RND ($n = 13^*$)</th>
<th>XRT ($n = 10^*$)</th>
<th>EXC+XRT ($n = 10^*$)</th>
<th>RND+XRT ($n = 4^*$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Primary</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neck and primary</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Salvaged</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*The number in patients represents the total number of patients by treatment category with N1–N2a disease.

Abbreviations: EXC, excisional biopsy; RND, Radical neck dissection; XRT, radiotherapy.

Iganej et al., Head and Neck: March 2002
Radiotherapy for N1 Disease

• Mendenhall compared 11 N1 patients who underwent node dissection and adjuvant radiation to 64 N1 patients undergoing irradiation alone
 – Irradiation + radiotherapy showed initial control in 10/11 patients (91%)
 – Irradiation alone showed initial control in 59/64 patients (92%)
• If a patient is unable to undergo surgery, radiation alone for N1 disease shows similar control rates to surgery with radiation

Erkal et al., IJROBP: 50(1); 2001
Do We Need to Address the Mucosal Sites/Contralateral Neck?
Unilateral vs Bilateral Irradiation

- 352 patients with CUP
- 277 were managed with bilateral neck irradiation and elective irradiation of sites in the nasopharynx, hypopharynx and larynx
- 26 received ipsilateral nodal irradiation only
- Patients treated with ipsilateral neck radiation compared to those receiving bilateral neck radiation had a 1.9-fold higher risk of recurrence in the head or neck (51 versus 27 percent, p = 0.05)
- Ipsilateral nodal irradiation also had a trend toward lower five year disease-specific survival (28 versus 45 percent).

Grau et al., Radiotherapy and Oncology: 2000 (55)
Table 2 Treatment outcomes following various therapeutic approaches (reference numbers are given in superscript)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Surgery alone (mainly neck dissection) (%)</th>
<th>Surgery and ipsilateral neck irradiation (%)</th>
<th>Surgery and bilateral neck/mucosal irradiation (%)</th>
<th>Radiotherapy alone (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary emergence rate</td>
<td>32<sup>23</sup></td>
<td>7<sup>79</sup></td>
<td>2<sup>79</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44<sup>76</sup></td>
<td>12<sup>27</sup></td>
<td>3<sup>23</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54<sup>26</sup><sup>a</sup></td>
<td>44<sup>76</sup></td>
<td>4<sup>73</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66<sup>62</sup></td>
<td></td>
<td>8<sup>76</sup></td>
<td></td>
</tr>
<tr>
<td>Nodal relapse</td>
<td>24<sup>77</sup></td>
<td>20<sup>76</sup><sup>c</sup></td>
<td>0<sup>76</sup><sup>c</sup></td>
<td>21<sup>77</sup></td>
</tr>
<tr>
<td></td>
<td>50<sup>69</sup></td>
<td></td>
<td>9<sup>25</sup></td>
<td></td>
</tr>
<tr>
<td>Distant metastases</td>
<td></td>
<td></td>
<td>14<sup>77</sup></td>
<td>43<sup>73</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17<sup>73</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18<sup>6</sup></td>
<td></td>
</tr>
<tr>
<td>Five-year disease free survival</td>
<td></td>
<td></td>
<td>54<sup>72</sup></td>
<td>28—45<sup>26</sup><sup>a</sup>,<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66<sup>6</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>74<sup>25</sup></td>
<td></td>
</tr>
<tr>
<td>Five-year overall survival</td>
<td>47<sup>76</sup></td>
<td>41<sup>27</sup></td>
<td>22<sup>78</sup></td>
<td>0<sup>8</sup></td>
</tr>
<tr>
<td></td>
<td>37<sup>99</sup></td>
<td></td>
<td>48<sup>79</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60<sup>25</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52<sup>31</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53<sup>76</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67<sup>8</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a Squamous cell and undifferentiated carcinoma included; surgery: excisional biopsy in the majority of cases.
^b 28% for ipsilateral neck irradiation, 45% for irradiation of bilateral neck and mucosa.
^c Only N1 cases included.
Table 2. Reported results of comprehensive and limited radiotherapy

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Unilateral radiotherapy (2, 3, 5, 8, 42, 43)</th>
<th>Comprehensive radiotherapy (3, 5, 7, 34-41, 43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median mucosal primary emergence rate (range)</td>
<td>8% (5–44)</td>
<td>9.5% (2–13)</td>
</tr>
<tr>
<td>Median neck relapse rate (range)</td>
<td>51.5% (31–63)</td>
<td>19% (8–49)</td>
</tr>
<tr>
<td>Median distant metastases rate (range)</td>
<td>38% (only given in Ref. 8)</td>
<td>19% (11–23)</td>
</tr>
<tr>
<td>Median 5-year overall survival rate (range)</td>
<td>36.5% (22–41)</td>
<td>50% (34–63)</td>
</tr>
</tbody>
</table>

EORTC trial examining this issue closed in 2004 w/o outcomes

Incidence of Mucosal Recurrence

- Erkal et al. reporting on 126 patients treated for an unknown primary at the University of Florida
- Similar 5 year rate of mucosal recurrence for known and unknown primaries
- Suggests that mucosal irradiation significantly reduced risk of primary site failure in patients with unknown primaries
- Or patients with unknown primaries have a much lower risk of secondary head and neck cancer developing subsequently
How do we get away from the toxicities of this???
We do this.....
Eliminate Prophylactic Larynx and Hypopharynx Treatment

- 17 patients with CUP were treated with larynx sparing radiotherapy previously described from 1997-2002.
- 16/17 patients had follow-up for at least 2 years.
- No patients developed SCC in a head and neck site.
- 1/17 patients developed persistent nodal disease (6%).
- 1/17 patients had recurrent nodal disease 1 year after completing RT (6%).
- 5 year cause specific and overall survival rates were 88% and 82% respectively.

Barker et al., Am J of Clin Onc: 28(5); 2005.
<table>
<thead>
<tr>
<th>Primary Site</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonsillar fossa</td>
<td>25 (43)</td>
</tr>
<tr>
<td>Base of tongue</td>
<td>23 (39)</td>
</tr>
<tr>
<td>Pyriform sinus</td>
<td>5 (9)</td>
</tr>
<tr>
<td>Posterior pharyngeal wall</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Lateral pharyngeal wall</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Vallecula</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Suprahyoid epiglottis</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

Other Diagnostic Considerations

- **EBV**
 - In-situ hybridization for EBV-1 RNA or PCR of genomic EBV DNA may be considered on nodal FNA tissue to aid in differentiation of nasopharyngeal carcinoma
 - This workup would be more helpful in young patients with poorly differentiated SCC found in a cervical node

- **HPV ISH or p16 staining**
 - Detection may be useful in determining if the primary has origin in the oropharynx
Why Tailor Mucosal Radiation

- No survival benefit
- Some studies show equivalent primary emergence with just neck irradiation
We know XRT-induced dysphagia increases with increasing dose to pharyngeal constrictors with a probable threshold dose of 45 Gy.
PRINCIPLES OF RADIATION THERAPY

Definitive RT:
- Conventional fractionation:
 - Gross Adenopathy: 66-74 Gy (2.0 Gy/fraction; daily Monday-Friday) in 7 weeks
 - Mucosal dosing: 50-66 Gy (2.0 Gy/fraction) to putative mucosal sites, depending on field size and use of chemotherapy. Consider higher dose to 60-66 Gy to particularly suspicious areas
 - Neck: Uninvolved nodal stations: 44-64 Gy (1.6-2.0 Gy/fraction)

Concurrent chemoradiation:
- Conventional fractionation:
 - Gross adenopathy: ≥ 70 Gy (2.0 Gy/fraction)
 - Mucosal dosing: 50-60 Gy (2.0 Gy/fraction) to putative mucosal primary sites. Consider higher dose to 60-66 Gy to particularly suspicious areas
 - Neck: Uninvolved nodal stations: 44-64 Gy (1.6-2.0 Gy/fraction)

IMRT is a preferred technique when targeting the oropharynx to minimize the dose to critical structures, especially the parotid glands.
We Use IMRT to Reduce Toxicity

Table 5. Incidence of acute toxicity by grade in patients receiving intensity-modulated radiotherapy (IMRT) and in historical control patients

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dysphagia</th>
<th>Mucositis†</th>
<th>Radiation dermatitis†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G≤2</td>
<td>G3</td>
<td>G≤2</td>
</tr>
<tr>
<td>IMRT patients (n = 22)</td>
<td>21 (95.5%)</td>
<td>1 (4.5%)</td>
<td>11 (50%)</td>
</tr>
<tr>
<td>Historical controls (n = 18)</td>
<td>9 (50%)</td>
<td>9 (50%)*</td>
<td>7 (41.2%)</td>
</tr>
<tr>
<td>p Value</td>
<td>0.003</td>
<td>0.82</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 6. Late toxicity by grade scored after at least 6 months of follow-up

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dysphagia</th>
<th>Xerostomia*</th>
<th>Taste alteration</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G0</td>
<td>G1–2</td>
<td>G3</td>
<td>G1–2</td>
</tr>
<tr>
<td>IMRT patient (n = 18)</td>
<td>5 (27.8%)</td>
<td>13 (72.2%)</td>
<td>0</td>
<td>15 (88.2%)</td>
</tr>
<tr>
<td>Historical control (n = 15)</td>
<td>7 (46.6%)</td>
<td>4 (26.7%)</td>
<td>4 (26.7%)</td>
<td>0.01</td>
</tr>
<tr>
<td>p Value</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Xerostomia and taste alteration were assessed in 17 patients.
† One patient with xerostomia Grade 0 was included.

What about Chemotherapy?

Unknown primary not included in post-op trials; we extrapolate
Review of utility of chemotherapy in MCCUP is limited to small retrospective reviews, but little benefit has been discerned and larger studies are needed.

Late Grade 3+ Dysphagia: 41% vs 11%
6 mo PEG dependence: 28% vs 4%
Conclusions

• Although there are distinct advantages to surgery, XRT or CRT are viable treatment options for patients with MCCUP.

• Mucosal irradiation may decrease primary emergence, but at a cost.

• Tailoring of therapy based on HPV, EBV, node level, clinical history, and judicious use of chemotherapy are all ways to mitigate unwarranted toxicity in these patients.