Approach to Dysphonia – The Role of Stroboscopy

- History
 - Onset, duration, severity, exacerbating factors
 - Vocal effort, vocal projection, odynophonia
 - Social – impact and risk factors
 - Swallowing and airway
- Physical
 - Visual: Laryngoscopy, with/without stroboscopy

Stroboscopy should often times be confirmatory, rather than revelatory, regarding etiology of dysphonia.

Normal Voice - Physiology

- Closure
- Symmetry
- Pliability

Dysphonia = Change in one or more of these qualities
* Each defect causes different changes

In my practice....

• 29.0% inflammatory
• 19.0% paralysis
• 16.5% phonotrauma
• 11.5% functional
 • 9.8% post-traumatic
 • 7.1% other neurologic
 • 4.6% neoplasm
 • 2.5% stenosis/other

Stroboscopy Analysis

With this background, consider:

– TVC motion
– TVC closure
– Mucosal lesions
– Supraglottic compression
– Secretions

– Vibration
 • Deep mucosal wave amplitude
 • Superficial pliability
 • Phase symmetry
– Posterior glottic edema / erythema

The study of vibration is what separates stroboscopy from laryngoscopy

Stroboscopy Analysis – Motion

• Immobility ≠ paralysis
• "Motion impairment" is vague
• Describe degree of motion
 – If immobile, how far off of midline?
 – If partially mobile, what is degree of motion?
 – Beware of ‘passive’ motion, as it may not be purposeful

Stroboscopy Analysis – Closure

• Complete – straightforward
 • In-between
 – "Short closed-phase quotient"
 – Complete at low-pitch, but not at high pitch
 – Pathologic? Or part of phonatory set-up?
• Incomplete
 – Pattern: hourglass, spindle, etc.
 – Severity – estimate the gap
Stroboscopy Analysis – Vibration

- Mucosal wave amplitude
 - Deep vibration
- Superficial pliability
 - Does the medial edge get deformed?
 - Analogy: ripples on a pond
- Clinically: is there SLP deep to a lesion?

Stroboscopy Analysis – Supraglottic Compression

- False vocal fold
- Anterior-posterior
- Task dependent?
- Related to breath support?
- Correctable? Try therapeutic maneuvers with scope in place

Stroboscopy Analysis – Lesions

- Nomenclature isn’t standardized
- Nodules, polyps, cysts
 - Is operative recognition necessary?
 - “Podules”? “Nolyps”?
- “I know it when I see it” (Justice Potter Stewart, Jacobellis v. Ohio, 1964)
- SLP approach – descriptive, not diagnostic; “excrescence”
Clinical Challenges

- Equipment issues
 - Scope
- Exam issues
 - Gag, focus, tracking
- Patient/lesion issues
 - Gag, nature of dysphonia

Equipment – Rigid vs Flex

- **Rigid**
 - Good anatomic detail
 - Limited to "eee"
 - Not always well tolerated, especially if there is hyperfunction
 - Phonotrauma
 - Injection: paralysis, paresis, presbylarynx
- **Flex**
 - Less illumination, magnification
 - Reduced anatomic detail (unless you can get close)
 - Well-tolerated
 - Multiple voice tasks
 - Functional
 - Neurologic

Equipment – Flexible Fiberoptic vs Distal Chip

Exam Quality – Focus
Exam Quality – Tracking

Patient Factors – Hemorrhage

Patient Factors – Limited View of TVC

Patient Factors – Sulcus Vocalis
- Difficult to recognize
 - 100 pts: rigid exam vs OR findings
 - 16 new findings in 9 pts
 - 15/16 were sulcus
- Difficult to repair

The Biggest Challenge?

Pattern Recognition
Cases

• Stroboscopy analysis

Case 1

Case 2

Case 3

Nodules, Polyps, and Cysts

• Benign phonotraumatic lesions
• Risk factor – increased vocal cord use
 – Singers, teachers, cheerleaders, etc.
 – “Not a disease of wallflowers”

Nodules, Polyps, and Cysts

• Decreased pliability
 – Difficulty with high, soft notes
 – Increased effort
 – Decreased vocal endurance
 – Decreased range
• Possible asymmetry
 – Diplophonia
Nodules, Polyps, Cysts

- Diagnosis is by videostrobolaryngoscopy
 - Note decreased pliability in region of fibrovascular lesions

Nodules, Polyps, and Cysts

- Voice therapy
 - Adjust vocal behaviors
 - Prevent repeat abuse

- Phonomicrosurgery
 - Best exposure possible
 - Save superficial lamina propria
 - Alter the ratio of stiff/pliable

Phonomicrosurgery

- Specialized
- Goal = improved voice
- Indicated if unable to meet vocal obligations
- Outpatient
- General anesthesia

Vascular Malformations

- Benign phonotraumatic lesion
 - Similar risk factors as other phonotraumatic lesions
- Can increase risk for vocal fold hemorrhage
 - Acute voice loss, possible odynophonia
 - Slow recovery – ~1 week
 - Increased risk for long-term scar with repeated events
- May also lead to edema, dilation with use
 - Increased effort

Vascular Malformation

- Treat with pulsed photoangiolyis
- 532nm Pulsed KTP laser selects oxyhemoglobin
 - Oxygenation absorption curve
 - PDL – 585 nm
Neoplasms – Leukoplakia

- Leukoplakia is the visual analog of dysplasia
 - Hyperkeratosis and parakeratosis
 - Pre-malignant lesions
 - Multi-step theory of carcinogenesis
 - Generally seen in smokers
 - Possible in non-smokers
 - Alcohol is a synergistic risk factor

- Voice varies from no change at all (superior lesion) to moderately hoarse (medial lesion)
 - Progressive dysphonia

Leukoplakia

- Old paradigm: follow them in office because biopsy would lead to scarring and worse voice

- New paradigm: pulsed KTP laser treatment
 - Neoplasms require angiogenesis for growth
 - No blood supply \(\rightarrow\) involution
 - Done first in OR for biopsy purposes
 - Followed with office-based laser as necessary

Laryngeal Cancer

- Estimated 120,000 new cases/year
 - Men > Women
 - Smoking, EtOH risk factors

- >95% squamous cell carcinoma
 - ¾ patients present early because of hoarseness
 - No vocal cord fixation
 - No lymph node involvement
 - No extension outside larynx

- ? Reflux as risk factor?
Laryngeal Cancer

- Larynx cancer – one of the most common sites for head and neck malignancy (~20-30%)
- Presentation:
 - Older patient, with smoking (and drinking) history
 - Hoarse for long time, without intervals of normal voice
 - Dysphagia, odynophagia, otalgia, hemoptysis
 - Lymph node metastases – only in advanced disease

Squamous Cell Carcinoma

- Early cancers (T1, T2) – transoral laser surgery vs. radiotherapy
- Advanced cancers (T3, T4) – transcervical surgery, chemoradiation

Squamous Cell Carcinoma

- Early cancers (T1, T2) – transoral laser surgery vs. radiotherapy
- Advanced cancers (T3, T4) – transcervical surgery, chemoradiation

Recurrent Respiratory Papilloma

- Benign growth, caused by human papillomavirus
- Adults and children affected
- Possible risk of malignant degeneration – rare
- Voice quality varies with degree and location of disease
 - Hoarse, breathy, strained, aphonie, etc.
 - Dysphonia generally progressive until RRP treated

Recurrent Respiratory Papilloma

- Diagnosis is visual and pathologic
 - Once diagnosis is made, recurrence diagnosed by history
- Therapy – surgical debridement
 - Cold instrument, CO2 laser, soft-tissue shaver
 - Pulsed KTP laser → preserve pliability
 - Adjuvant therapy: cidofovir, indole-3-carbinol, etc.
 - Multiple surgeries are expected
Recurrent Respiratory Papilloma

Vocal Cord Paralysis

• Symptoms relate to glottic insufficiency
 – Breathy voice
 – Diminished projection
 – Increased effort
 – Higher pitch

• Causes: surgical trauma, neoplasm, CNS injury, idiopathic (viral neuropathy?)

Case 7

Vocal Cord Paralysis

• Work-up
 – If history does not provide a clear etiology, then CT scan from skull base to thoracic inlet
 • If this is negative and paralysis persists, consider repeat imaging in ~6 months
 – Assess swallowing – aspiration risk exists
 – Assess voice

Case 8

Vocal Cord Paralysis

• Observation
• Injection medialization
 – Office vs. OR
 – Temporary vs. permanent
• Laryngoplastic phonosurgery
 – Permanent procedure
 – Medialization laryngoplasty
 – Adduction arytenopexy
 – Cricothyroid subluxation

Vocal Cord Paralysis

• Observation
• Injection medialization
 – Office vs. OR
 – Temporary vs. permanent
• Laryngoplastic phonosurgery
 – Permanent procedure
 – Medialization laryngoplasty
 – Adduction arytenopexy
 – Cricothyroid subluxation
Muscle Tension Dysphonia

- Odynophonia is the hallmark symptom
- Tenderness of hyoid musculature is occasional sign
- Generally occurs in someone who “forces speech” in setting of inflammation
- Short-term compensation becomes maladaptive
- Conversion dysphonia – a psychogenic voice disorder, closely related to MTD
- Treatment is voice therapy

Infectious Laryngitis

- Most common cause of hoarseness, and one that I rarely see → true incidence is unknown
- Viral URI (occasionally bacterial)
 - Rhinovirus, Parainfluenza, RSV, Adenovirus, etc.
- Generally self-limited to 7-10 days
- Vocal cord inflammation → decreased vibration, decreased sound quality, and increased effort of phonation (unable to speak softly)

Case 9

- Harsh whisper, sometimes painful
- Laryngoscopy:
 - Erythematous TVC
 - Thick secretions
 - Decreased vibration
- Treatment
 - Hydration, humidification, counseling re: voice use
 - Antibiotics prn for persistent symptoms
 - Anti-reflux precautions
Concluding Case – Case 10

Recurrent Vocal Cord Hemorrhage

- Related to vascular malformations
- Also related to degree of voice use/abuse
- Shear stress of vocal fold vibration
- Symptoms: acute vocal deterioration, odynophonia
- Diagnosis: exam revealing hemorrhage
- Treatment:
 - Acute – voice rest
 - Chronic – KTP laser to address microcirculation