Neurological Representation of Swallowing

Patti Bailey
April 2004
Swallowing

- Complex sensorimotor activity
- Involving organized interactions between cortical, cerebellar, bulbar, and peripheral systems
Research

- Several types:
 - Electrical muscle/neuron stimulation
 - Functional imaging studies (fMRI, PET)
 - Lesion studies
Objectives:

- Review cranial nerves important for mechanical swallow
- Cranial nerve nuclei & pathways
- Brainstem
- Cortex
- Cerebellum
Cranial Nerves
(Highlighted nerves involved in mechanical swallow)

<table>
<thead>
<tr>
<th>I</th>
<th>Olfactory</th>
<th>VII - Facial</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Optic</td>
<td>VIII - Auditoryvestibular</td>
</tr>
<tr>
<td>III</td>
<td>Oculomotor</td>
<td>IX - Glossopharyngeal</td>
</tr>
<tr>
<td>IV</td>
<td>Trochlear</td>
<td>X - Vagus</td>
</tr>
<tr>
<td>V</td>
<td>Trigeminal</td>
<td>XI – Spinal Accessory</td>
</tr>
<tr>
<td>VI</td>
<td>Abducens</td>
<td>XII - Hypoglossal</td>
</tr>
</tbody>
</table>
Cranial Nerves – Peripheral Nervous System

- Can be motor (lower motor neurons), sensory, or both
- Can also contain special sensory (i.e., taste) or special motor components (i.e., salivary glands)
- Sensory nerves provide information on:
 - Touch
 - Temperature
 - Pain
 - Proprioception
V – Trigeminal Nerve

- Motor + Sensory
- Innervates muscles of mastication
- Sensory nerve of the face and neck
V - Trigeminal Nerve

3 Branches

- Ophthalmic (sensory): not involved in swallow
- Maxillary (sensory): upper lip, maxillary teeth and palate, small area of pharynx
- Mandibular (sensory + motor)

Note: Several other CN branches hitchhike along V, including parts of VII (visceral motor nerves including salivary glands) and IX
V- Mandibular Branch

Sensory:
- Anterior 2/3 of tongue (but not taste)
- Mucous membranes of mouth & buccal walls,
- Gums and mandibular teeth
- Temporomandibular joint

Motor:
- Mastication muscles: temporalis, masseter, pterygoids
- Tensor muscles: tensor veli palatini (velar tensor)
- Suprahyoid muscles– mylohyoid & anterior belly of digastric muscle
V - Trigeminal Nerve

- Trigeminal Ganglion
- Mandibular Branch
- Ophthalmic Branch
- Maxillary Branch
- Lingual Nerve
- Buccal Nerve
- Inferior Alveolar Nerve

Head and Neck Anatomy 2 © Mosby, an imprint of Harcourt Publishers Ltd.
Mastication Muscles

- Temporalis
- Masseter
- Lateral Pterygoid
- Medial Pterygoid
VII – Facial Nerve

- Whereas V is the sensory nerve of the face and neck, VII is the motor nerve of the face and neck.
- Sensory + Motor Components
- Innervates superficial face and neck muscles
- Contains special sensory and visceral motor components
VII – Facial Nerve Sensory Branches

- Special Sensory
 - Chorda Tympani: taste for anterior 2/3 of tongue & other sensory for hard/soft palate

- General Sensory:
 - not involved in swallow
VII – Facial Nerve Sensory Branches

Chorda Tympani

Head and Neck Anatomy 2 © Mosby, an imprint of Harcourt Publishers Ltd.
VII - Facial Nerve Motor Branches

- **General Motor – 5 branches**
 - Temporal – not involved in swallow
 - Zygomatic - not involved in swallow
 - Buccal – orbicularis oris, buccinator (masticator), risorius (lip retractor)
 - Mandibular – orbicularis oris, mentalis (lip protruder)
 - Cervical – platysma (mandibular depressor)

- **Visceral Motor**
 - Salivary glands (hitchhike with CN V)
 - Palatal & nasal mucosal membranes
VII – Facial Nerve Motor Branches

- Temporal Branch
- Zygomatic Branch
- Buccal Branch
- Cervical Branch
- Mandibular Branch
Facial Muscles
Important for Swallow

- Orbicularis Oris
- Buccinator
- Mentalis
More Facial Muscles...

- Risorius
- Platysma
IX – Glossopharyngeal Nerve

- Sensory + Motor Components
 - Special visceral efferent supplies the stylopharyngeus muscle

- Contains special sensory components
 - Visceral afferent supplies the mucous membranes of part of the tongue, tonsil, upper pharynx
 - Visceral afferent provides taste sensation from the posterior third of the tongue

- “Cooperative innervation” with CN X
 - Damage to IX may result in absent gag, though typically absent gag is considered vagal
IX – Glossopharyngeal Nerve

Head and Neck Anatomy 2 © Mosby, an imprint of Harcourt Publishers Ltd.
X – Vagus Nerve
XI – Spinal Accessory Nerve
XII – Hypoglossal Nerve
Brainstem + Spinal Cord
Cranial Nerve Nuclei
Brainstem – Medulla

“Central Pattern Generator”

- Brainstem is the home of all sensory & motor cranial nerve nuclei
- Bilateral innervation
- Controls sequential muscle activity of swallow
- Interneurons for both respiration (swallow apnea) and vomiting
- Modulated, not controlled by higher regions

Note: Pons does contain nucleus for CN V & reticular formation, but info is “processed” in medulla nuclei
Brainstem Nucleii - Medulla

Sensory CN - Nucleus Tractus Solitarius (NTS)
Motor CN - Nucleus Ambiguous
(sends motor messages to oral, pharyngeal, & esophageal muscles of swallow)

Sensory info (bolus on faucial arches, PPW, base of tongue, etc) sent via CN to NTS.
Interneurons in dorsal medulla relay info to NA & surrounding reticular formation (ventral medulla) which sends efferent messages to CN pathways.
2 types of swallows

- Volitional (voluntary initiation by positioning bolus within oral cavity followed by reflexive “pharyngeal” swallow)
- Involuntary/Reflexive (as in secretion management, stim to faucial pillars)
Voluntary Swallow Pathways

- Corticobulbar – pyramidal pathway
- Corticofugal pathway mediates cortical initiated swallows & the afferent pathway mediating the reflex phase of swallow may share interneuron in the bulbar center
Reflexive Swallow Pathways

- Reflexive pathways from bulbar center (particularly when laryngeal elevation begins – early event of reflexive swallow)
Cortical Involvement in Swallow

- Involved with the anticipatory, oral, and “triggering phases” of the volitional swallow
- Most research indicates: No direct involvement in the reflexive part of the swallow (initiation & execution)
Cortex

- Controls initiation of volitional swallow
- Controls activity/attention level for volitional swallow (i.e., drowsy… reduced cortical input results in difficulty accommodating different boluses)
- Specifically controls duration and intensity of tongue muscles, hyoid elevations, vocal fold adduction, UES contraction – corticobulbar pathway through internal capsule
- Frontal lobe anterior to sensorimotor cortex & suppl. motor strip, bilateral anterolateral in frontal of precentral cortex
Strongest Activation Areas in Cortex

- Inferior precentral gyrus – bilaterally
- Primary somatosensory area (BA 43)
- Right Premotor cortex
- Right Precentral Gyrus
- Right Anterior Insula
- Left cerebellum
- Basal ganglia, Thalamus, right temporal gyri, right inferior parietal lobe
 - Zald & Pardo, 1999
Reflexive vs. Volitional

- Reflexive: bilateral activation of primary motor and primary somatosensory cortex; left hemisphere dominance observed
- Volitional: bilateral activation of above & bilateral insula, prefrontal cortex (arousal, intent, planning, urge), anterior cingulate (emotional processing of stimuli), precuneus, cuneus, & parieto-occipital regions, right hemisphere dominance

» Kern et al (2001)
Reflexive vs. Volitional

- All swallows activated:
 - Primary & pre-motor cortex (BA 4, 6), primary somatosensory cortex (3/2/1, 43), right insula
 - Less prominent & consistent: superior temporal gyrus (BA 42/41, 22), middle & inferior frontal gyri, and frontal operculum

- Volitional Swallow also activated:
 - Anterior cingulate
 - Processor of sensory, motor, cognitive info
 - Movement regulation, autonomic functions, attention, response selection
Primary Cortical Areas

- Primary Motor Cortex (4)
- Premotor Cortex (6)
- Both involved in volitional swallow
- Cortical – brainstem pathways
 - Corticobulbar
 - Corticofugal
Bilateral Asymmetric Cortical Representation

- Muscles of speech and oral swallow are symmetrically represented.
- Muscles of pharyngeal and esophageal swallow appear to be asymmetric with a dominant side.
Bilateral Asymmetric Cortical Representation

- Pts. with pharyngeal dysphagia are those with lesions on the in the dominant “swallow” hemisphere

- Improved pharyngeal swallow associated with plasticity of non-lesioned hemisphere

Left vs. Right

- Left frontal & parietal operculum lesions associated with “swallow apraxia”
- Intact reflexive swallow
Left vs. Right

- Robbins & Levine (1989)
 - Left CVA – decreased oral prep & delayed pharyngeal swallow
 - Right CVA – decreased pharyngeal response & increased aspiration

 - All cortical areas (frontal, parietal, temporal) bilaterally innervated, but left hemisphere appeared to be dominant hemisphere for @ 63%
Left vs. Right

- Zald & Pardo (1999)
 - Bilateral innervation of inferior precentral gyrus, primary somatosensory (BA 43), & inferior pre-motor cortex
 - Right dominance observed in anterior insula

 - Bilateral innervation, but increased dominance seen in pre-motor, insular, & frontal operculum (Left vs right??)
Insula

- Located beneath the juncture of frontal, temporal, and parietal lobes
- Coordinates/orchestrates interaction of oral musculature & gustation & alimentary tract
- Connects with primary and supplementary motor cortex, thalamus, NTS
Right Anterior Insula

- Lesions reduce magnitude of sensory input resulting in delayed swallow
- Increasing sensory input – taste, volume, temperature
- Receives afferent info, mediates sensory & motor aspects of swallow and alimentary tract, including voluntary oral movements (& motor speech)

» Daniels & Foundas (1997)
Cerebellum

- Minimal research
- Connectivity between primary motor & supplemental motor cortex, as well as brainstem & thalamus
Left Cerebellum

- Plays role in pharyngeal & esophageal swallow
 - Coordination, sequencing, & timing of swallow
 - Integrates proprioceptive, vestibular, & motor planning to create smooth movements
 - Lesions: delayed swallow, incoordination, drooling
 (Zald & Pardo, 1999)
Basal Ganglia

- Left basal ganglia lesions result in mild oral-pharyngeal dysphagia
- Slow transit times
- Decreased efficiency of swallow
Thalamus/Hypothalamus

- Thalamus acts as relay for info from hypothalamus to premotor and motor cortex
- Hunger & thirst control
So what does this all mean?

- Neurologically, swallowing is a highly complex, integrated activity
- With differences between volitional & reflexive swallows
- Sensory based activity (requires sensory info to stimulate swallow)
- Little research on pediatric population
- Expect recovery of function secondary to tissue healing, but also plasticity
- Benefit to boosting sensory messages (temperature, taste, amount)